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Using the numerical solution of the nonlinear Schrödinger equation and a variational method it is shown that
s3+1d-dimensional spatiotemporal optical solitons can be stabilized by a rapidly oscillating dispersion coeffi-
cient in a Kerr medium with cubic nonlinearity. This has immediate consequence in generating dispersion-
managed robust optical soliton in communication as well as possible stabilized Bose-Einstein condensates in
periodic optical-lattice potential via an effective-mass formulation. We also critically compare the present
stabilization with that obtained by a rapid sinusoidal oscillation of the Kerr nonlinearity parameter.
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I. INTRODUCTION

After the prediction of self-trappingf1g of an optical
beam in a nonlinear medium resulting in an optical soliton
f2,3g, there have been many theoretical and experimental
studies to stabilize such a soliton under different conditions
of nonlinearity and dispersion. A bright soliton ins1+1d di-
mensionsDd in Kerr mediumscubic nonlinearityd is uncon-
ditionally stable for positive or self-focusingsSFd nonlinear-
ity in the nonlinear Schrödinger equationsNLSd f3g.
However, in s2+1dD and s3+1dD, in homogeneous bulk
Kerr medium one cannot have an unconditionally stable soli-
tonlike beamf3g. fIf the nonlinearity is negative or self-
defocusing sSDFd, any initially created soliton always
spreads outf3g.g If the nonlinearity is positive or of SF type,
any initially created highly localized soliton is unstable in
both s2+1dD ands3+1dD f3g. Such a confined wave packet
in s3+1dD is often called a light bullet and represents the
extension of a self-trapped optical beam into the temporal
domainf3g. The generation of a light bullet is of vital impor-
tance in soliton-based communication systems. On the ex-
perimental front strong stabilization ofs2+1dD discrete vor-
tex solitons in a SF nonlinear medium have been observed in
optically induced photonic latticesf4g. Such solitons, how-
ever, can only be modeled by a more complicated nonlinear-
ity in the NLS in contrast to the simple cubic Kerr nonlin-
earity considered in this paper.

Recently, through a numerical simulation as well as a
variational calculation based on the NLS it has been shown
that a soliton ins2+1dD f5,6g can be stabilized in a layered
medium if a variable Kerr nonlinearity coefficient is used in
different layersf5,6g. A weak modulation of the nonlinearity
coefficient along the propagation direction leads to a reason-
able stabilization ins2+1dD f5g. A much better stabilization
results if the Kerr coefficient is a layered medium is allowed
to vary rapidly between successive SDF and SF type nonlin-
earities, i.e., between positive and negative valuesf6g.

However, in recent years optical soliton formed by a con-
trolled variation of dispersion coefficientsdispersion-
managed optical solitond in a Kerr medium has been of gen-
eral interest in communicationf7g. A dispersion-managed
soliton allows robust propagation of pulses and is favored

over normal solitons. The recent stabilized optical beam in a
nonlinear waveguide array ins1+1dD f8g, called diffraction
managed soliton, is quite similar to the present dispersion-
managed optical soliton. That problem was describedf8g by
the one-dimensional NLS with a periodic dispersion coeffi-
cient. Such a periodic variation of the dispersion coefficient
leads to a greater stability of the soliton during propagation
in s1+1dD f8g. More recently, Abdullaevet al. f9g have
shown by a variational and numerical solution of the NLS
that by employing a rapidly varying dispersion coefficient it
is possible to stabilize an optical soliton ins2+1dD over
large propagation distances.

The possibility of the stabilization of an optical soliton in
s2+1dD by dispersion managementf9g and Kerr singularity
managementf10–12g as well as ins3+1dD by Kerr singular-
ity managementf13,14g in SF medium has led us to investi-
gate the possibility of the stabilization of an optical soliton in
s3+1dD by dispersion management. However, some of these
studies were concerned with the stabilization of Bose-
Einstein condensatesf10,12,13g using the nonlinear Gross-
Pitaevskii equationf15g which is very similar to the NLS
structurally. The extension of the problem of stabilization of
optical soliton from lower to higher dimensions, e.g., from
s1+1dD to s3+1dD, is of great interest in the actual three-
dimensional world. It is also more challenging due to the
possibility of violent collapse in SF medium in higher
dimensionsf3g.

We begin the present study with a time-dependent varia-
tional solution of the NLS with a rapidly oscillating disper-
sion coefficient ins3+1dD. The variational method leads to a
set of coupled differential equations for the soliton width and
chirp parameters, which is solved numerically by the fourth-
order Adams-Bashforth methodf16g. The variational solu-
tion illustrates that as3+1dD light bullet can be stabilized
over a large propagation distance in a Kerr SF medium with
a rapidly oscillating dispersion coefficient for beam power
above a critical value. Next we turn to a complete numerical
solution of the partial differential NLS by the Crank-
Nicholson methodf17g. The complete numerical solution
demonstrates the stabilization of a light bullet over large
propagation distance by dispersion management ins3+1dD
SF Kerr medium.
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We also compare the present stabilization of a light bullet
by dispersion management with the stabilization obtained by
applying an oscillating Kerr nonlinearity as suggested in
Ref. f14g. We find that both schemes lead to comparable
stabilization of a light bullet over a large propagation dis-
tance of few thousand units.

Although, the present work is of primary interest in the
generation of robust optical solitons, it is also of interest
from a mathematical point of view in nonlinear physics in
the stabilization of a soliton in three dimensions. Moreover,
this investigation has interesting implication in the study of
Bose-Einstein condensates. The quantum nonlinear equation
governing the evolution of the condensate, known as the
Gross-Pitaevskii equationf15g, is identical with thesclassi-
cald NLS f3g, for the evolution of optical soliton, although
the interpretation of the different variables of these two equa-
tions is different. In recent years there has been experimental
f18g and theoreticalf19g studies of Bose-Einstein conden-
sates in periodic optical-lattice potentials generated by a
standing-wave laser beam. By an effective-mass description,
the Gross-Pitaevskii equation for the condensate in a peri-
odic optical-lattice potential can be reduced to a dispersion-
managed NLS, where the effective mass could be positive or
negativef20g. There has already been experimental applica-
tion of such dispersion management to Bose-Einstein con-
densatesf21g. The effective mass can be varied by changing
the parameters of the periodic potentialf9g. Once a con-
trolled variation of the effective mass would be possible, it
might be possible to stabilize a Bose-Einstein condensate in
this fashion.

In Sec. II we present a variational study of the problem
and demonstrate the possible stabilization of a light bullet in
s3+1dD. In Sec. III we present a complete numerical study
based on the NLS to study in detail the stabilization of a
dispersion-managed light bullet. We also compare the
present stabilization with that by nonlinearity management as
in Ref. f14g. Finally, in Sec. IV we give the concluding
remarks.

II. VARIATIONAL CALCULATION

For anomalous dispersion, the NLS can be written asf3g

Fi
]

] z
+

gszd
2

¹r
2 + uusr ,zdu2Gusr ,zd = 0, s1d

where in s3+1dD the three-dimensional vectorr ;sx,y,td
has space componentsx andy and time componentt, andz is
the direction of propagation. The Laplacian operator¹r

2 acts
on the variablesx, y, and t. The dispersion coefficientgszd
in a Kerr medium is taken to be rapidly oscillating and can
have successive positive and negative values. The normaliza-
tion condition isedr uusr ,zdu2=P, whereP is the power of
the optical beamf1,6g.

For a spherically symmetric soliton ins3+1dD, usr ,zd
=Usr ,zd. Then the radial part of the NLSs1d becomesf3g
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For stabilization of the soliton, we shall employ the follow-
ing oscillating dispersion coefficient:gszd=f1+g1sinsvzdg,
where frequencyv is large. In this paper we consider varia-
tional and numerical solutions of Eq.s2d to illustrate the
stabilization ofs3+1dD light bullet.

Recently, it was suggestedf14g that a rapid variation of
the Kerr nonlinearity parameter also stabilizes a soliton. In
this study we critically compare these two ways of stabiliza-
tion. For that purpose we consider
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where the nonlinearity parameter will be taken to be rapidly
varying for stabilizing the soliton. In Ref.f14g nszd was
taken to be rapidly jumping between positive and negative
values and a small propagation distancez was considered for
stabilization. In the present study a sinusoidal variation of
nszd is considered over a much larger propagation distance.
For stabilization we considernszd=f1−g2sinsvzdg in this pa-
per, where the second term on the right is rapidly oscillating
for a largev and whereg2 is a constant.

First we consider the variational approach with the fol-
lowing trial Gaussian wave function for the solution of
Eq. s2d f3,10,12,14g

Usr,zd = NszdexpF−
r2

2R2szd
+

i

2
bszdr2 + iaszdG , s4d

whereNszd, Rszd, bszd, andaszd are the soliton’s amplitude,
width, chirp, and phase, respectively. In Eq.s4d Nszd
=P1/2/ fp3/4R3/2szdg. The trial function s4d satisfiessad the
normalization conditionf1,6g as well as the boundary condi-
tions sbd Usr ,zd→const asr →0 andscd uUsr ,zdu decays ex-
ponentially asr →` f6g.

The Lagrangian density for generating Eq.s2d is f10,14g

LsUd =
i

2
S ] U
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] r
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+
uUu4

2
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where the functional dependence of the quantities onr andz
is suppressed. The trial functions4d is substituted in the La-
grangian density and the effective Lagrangian is calculated
by integrating the Lagrangian density:Leff=eLsUddr . With
U given by Eq.s4d the effective Lagrangian is

Leff =
1

2
p3/2N2szdR3szdF−

3

2
ḃszdR2szd − 2ȧszd +

N2szd
2Î2

−
3

2

gszd
R2szd

−
3

2
R2szdb2szdgszdG , s6d

where the overhead dot denotes derivative with respect toz.
The standard Euler-Lagrange equations forNszd, Rszd, bszd,
andaszd are f6,10,12g given by
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where b stands forNszd, Rszd, bszd, or aszd. The Euler-
Lagrange equation foraszd gives the normalization:

p3/2N2R3 = P. s8d

The Euler-Lagrange equations forRszd andNszd are given by

5ḃ +
4ȧ

R2 +
g

R4 + 5b2g =
N2

Î2R2
, s9d

3ḃ +
4ȧ

R2 +
3g

R4 + 3b2g =
2N2

Î2R2
, s10d

where thez dependence of the variables is suppressed. The
Euler-Lagrange equation forbszd is

Ṙszd = Rszdbszdgszd. s11d

Equationss9d ands10d lead to the following rate of variation
of bszd:

ḃszd =
gszd
R4szd

− b2szdgszd −
P

2Î2p3

1

R5szd
. s12d

Now defining the new variablekszd=bszdRszd, Eqs.s11d and
s12d can be rewritten as

Ṙszd = gszdkszd, s13d

k̇szd =
gszd
R3szd

−
P

2Î2p3

1

R4szd
. s14d

Equationss13d ands14d are the variational equations of mo-
tion for Rszd andkszd. Here we consider the stability condi-
tion of optical solitons described variationally by these equa-
tions for gszd=f1+g1sinsvzdg, where the second term is
rapidly varying slarge vd with zero mean value. However,
this set of coupled differential equations cannot be solved
analytically and we resort to their numerical solution using
the four-step Adams-Bashforth methodf16g. For a largev
and P, andg1ù2 stabilization of the soliton is always pos-
sible provided that the initial values ofRszd and kszd are
appropriately chosen. The soliton can also be stabilized by
employing a periodically oscillating Kerr nonlinearity. How-
ever, in that case the coupled set of differential equations for
width Rszd and chirpbszd was simpler and could be studied
analytically to establish stabilization of the systemf14g.

In Fig. 1 we exhibit the numerical results for the width
Rszd obtained from the solution of the variational equations
s13d and s14d. In the present calculation we takev=15, g1
=4, P=500, andRsz=0d=6. If the initial value ofbszd is
chosen appropriately, stabilization of the system can be ob-
tained. For these sets of parameters, stabilization was ob-
tained forbsz=0d=0.14, and we show the result in Fig. 1,
where we plotRszd /Rs0d vs z. The width Rszd is found to
remain stable for a range of values ofz. Small oscillations in
Fig. 1 sustain the soliton for a large propagation distancez.

The numerical values forg1 and v are taken as examples,
otherwise, they do not have great consequence on the result
so long asv is large corresponding to rapid oscillation.
There is no upper limit forP and stabilization seems possible
for an arbitrarily largeP. For largerP the stabilization is
more sustained and, consequently, it is easier to stabilize a
soliton. However, SF nonlinearity is essential for the stabili-
zation and stabilization is only possible for powerP above a
critical value.

The sinusoidal variation of the dispersion coefficient as
considered above in the variational study only simplifies the
algebra and is by no means necessary for stabilization of
solitons. Any rapid periodic oscillation of the dispersion co-
efficient was also found to stabilize the soliton. The same
was found to be true in the stabilization of a soliton by Kerr-
singularity management ins3+1dD f13,14g.

III. NUMERICAL RESULT

Motivated by the approximate variational study above,
now we solve Eqs.s2d ands3d numerically using a split-step
iteration method employing the Crank-Nicholson discretiza-
tion schemef17,22g. The z-iteration is started with the
known solution of some auxiliary equation with zero nonlin-
earity. The auxiliary equation with known Gaussian solution
is obtained by adding a harmonic oscillator potentialr2 to
Eqs.s2d and s3d and setting the nonlinear term to zero, e.g.,

Fi
]

] z
+

1

2

]2

] r2 +
1

r

]

] r
+

dszdr2

4
GUsr,zd = 0. s15d

In Eq. s15d we have introduced a strength parameterdszd
with the radial trap. Normally,dszd=1; when the radial trap
is switched offdszd will be reduced to zero. Asymptotically
decaying real boundary condition forUsr ,zd is used through-
out this calculation.

When the radial trap is reduced to zero the wave function
extends to a large value ofr. Hence to obtain a converged
result a large value ofr is to be considered in the Crank-
Nicholson discretization scheme. In the present calculation
we employ anr-step of 0.1 with 40 000 grid points spanning
an r-value up to 4000 and az-step of 0.001. In the course of

FIG. 1. The width of the solitionRszd /Rs0d vs propagation dis-
tancez from the numerical solution of the coupled set of equations
s13d and s14d, with gszd=f1+g1sinsvzdg for P=500,g1=4, v=15,
Rs0d=6, andks0d=0.14.
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z-iteration a positive SF Kerr nonlinearity with appropriate
powerP is switched on slowly and the harmonic trap is also
switched off slowly. If the nonlinearity is increased rapidly
the system collapses. The tendency to collapse or expand to
infinity must be avoided to obtain a stabilized soliton. Al-
though, for the sake of convenience we applied a harmonic
trap in the beginning of our simulation, which is removed
later with the increase of nonlinearity, this restriction is by no
means necessary for stabilizing a soliton.

First we consider the numerical solution of Eq.s2d to
create the desired soliton. After switching off the harmonic
trap and introducing the final powerP, the oscillating disper-
sion coefficientgszd=f1+g1sinsvzdg is introduced. A stabili-
zation of the final solution could be obtained for a largev
andP. If the SF power after switching off the harmonic trap
is large compared to the spatiotemporal size of the beam the
system becomes highly attractive in the final stage and it
eventually collapses. If the final power after switching off the
harmonic trap is small for its size the system becomes
weakly attractive in the final stage and it expands to infinity.
The final power has to have an appropriate value consistent
with the size, for final stabilization.

Starting from Eq.s15d the soliton can be created with a
wide range of variation of powerPszd and strengthdszd. In
Fig. 2 we show the actual variation ofPszd anddszd of the
radial trap in Eq.s15d. A stabilized soliton can be obtained
for different variations ofPszd anddszd and the variation in
Fig. 2 are by no means unique and are to be considered as a
possible variation. By switching off the harmonic trap lin-
early for 13,z,15 and increasing the nonlinearity for 0
,z,400, an almost stationary light bullet is prepared. One
interesting feature of Fig. 2 is that we could not find a linear
variation of Pszd over the whole range to obtain the final
soliton. A linear variation usually led to collapse or expan-
sion to infinity of the final soliton. A fine-tuning of the power
was needed for obtaining the quasistationary soliton with the
kinetic pressure almost balancing the nonlinear attraction.
This fine-tuning led to the final fractional powerP=868.4. A
quasistationary soliton, rather than a rapidly expanding or
collapsing soliton, was ideal for stabilization. Although the
final powerP=868.4 is used in this study, stabilization can
be obtained for anyP greater than a critical value.

In the preparation of the soliton in Fig. 2 no oscillating
dispersion coefficient has been used. The oscillating disper-

sion coefficient has been applied later. Ins2+1dD Saito and
Ueda f12g first applied a weak oscillating nonlinearity and
then increased its strength in a linear fashion withz iteration.
The nonlinearity manipulation of Saito and Uedaf12g is dis-
tinct from ours. However, the final result should be indepen-
dent of how the oscillating dispersion or nonlinearity coeffi-
cient is introduced.

The propagation of the free light bullet is studied by a
direct numerical solution of the NLSs2d. Once it is allowed
to propagate in thez direction the light bullet starts to col-
lapse and is destroyed after propagating a distance of about
300 units ofz as shown in Fig. 3sad where we plot the profile
of the freely propagating light bulletuUsr ,zdu vs r andz. This

FIG. 2. sColor onlined Variation of powerPszd and strengthdszd
of radial trap in the initial stage of stabilization until the radial trap
is removed and the final powerP=868.4 attained atz=400.

FIG. 3. sColor onlined sad The solitonic wave functionuUsr ,zdu
vs r and z of a freely propagating light bullet of powerP=868.4;
the arrow atz=300 shows the beginning of collapse withuUsr
=0,zdu starting to diverge.sbd The solitonic wave functionuUsr ,zdu
of Eq. s2d vs r andz of the light bullet ofsad stabilized by dispersion
managementgszd=f1+4 sins5pzdg applied for all z.0. scd The
solitonic wave functionuUsr ,zdu of Eq. s3d vs r and z of the light
bullet of sad stabilized by Kerr nonlinearity managementnszd=f1
−4 sins5pzdg applied for allz.0.
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means that the nonlinear attraction supersedes the kinetic
pressure in this soliton and it collapses eventually.

In the present scheme of stabilization the dispersion coef-
ficient gszd=f1+g1sinsvzdg oscillates rapidly between posi-
tive and negative values. A negative dispersion coefficient
gszd corresponds to collapse and a positive dispersion coef-
ficient corresponds to expansion. In one half of the oscillat-
ing cycle the soliton tends to collapse and in the other half it
tries to expand. If, in the first semicycle of the application of
the oscillating dispersion coefficient,gszd is positive, the
slowly collapsing soliton of Fig. 3sad will tend to expand in
this semicycle. In the next semicycle,gszd will be negative
and the soliton will tend to collapse. This happens for a
positiveg1.1. If the expansion in the first interval is com-
pensated for by the collapse in the next interval, a stabiliza-
tion of the system is obtained. However, ifg1 is negative, in
the first semicycle of oscillation the slowly collapsing soliton
of Fig. 3sad will collapse further and a satisfactory stabiliza-
tion cannot be obtained. For a largev the system remains
virtually static and the very small oscillations arising from
collapse and expansion remain unperceptible.

Next using Eq.s2d we illustrate the possible stabilization
of the s3+1dD soliton of powerP=868.4 of Fig. 3sad by the
application of the oscillating dispersion coefficientgszd=f1
+g1sinsvzdg with g1=4 andv=5p for z.0. The profile of
the dispersion-managed light bulletuUsr ,zdu vs r and z is
plotted in Fig. 3sbd. It is realized that after the application of
dispersion management the soliton remains stable for a large
propagation distancez. This shows clearly the effect of the
oscillating dispersion coefficient on stabilization. The disper-
sion management of the type considered in Fig. 3sbd can
prolong the life of the soliton significantly. In Fig. 3sbd the
profile of the solitonic wave function over the large interval
of z clearly shows the quality of stabilization. The stabiliza-
tion seems to be good and can be continued for longer inter-
vals of z by considering a soliton of larger power.

Finally, using Eq.s3d we consider the stabilization of the
above soliton of powerP=868.4 by the application of an
oscillating Kerr nonlinearitynszd=f1−g2sinsvzdg with g2

=4 and v=5p for z.0. In this case forg2.1, the Kerr
nonlinearity coefficientnszd is negative in the first semicycle
of the oscillating Kerr coefficient. This will correspond to an
expansion of the soliton, so that the collapsing tendency of
the soliton of Fig. 3sad could be stopped and a stabilization
of the soliton could be obtained. The profile of the stabilized
light bullet by nonlinearity management is plotted in Fig.
3scd. It is found that the oscillating Kerr nonlinearity can
stabilize the light bullet for a large propagation distance and
enhance the life of the soliton significantly. The quality of
stabilization is comparable to that obtained by dispersion
management. In both schemes the light bullet can remain
stable for few thousands units ofz. In Figs. 3 we illustrate
this stabilization forz up to 2000. The stabilization obtained
in s2+1dD by similar dispersion f9g and nonlinearity
f6,10–12g managements was over a much smaller interval of
z s,100d.

The final solitonic wave functionuUsr ,zdu extends to very
large values ofr. It has a sharp peak for smallr, reminiscent

of strong binding, and a large extention inr, typical of weak
binding. We illustrate these features in Fig. 4 where we plot
uUsr ,z=1000du of a light bullet vsr for dispersion or nonlin-
earity managements of Figs. 3sbd and 3scd. The curves for
dispersion and nonlinearity managements are identical with
each other and a single curve is shown. The long tail of the
stabilized light bullet is shown in inset. For comparison a
Gaussianf,exps−r2/100dg is also shown.

For both dispersion and nonlinearity managements we
found that the stabilization can only be obtained for beams
with power larger than a critical value. However, we could
not obtain a precise value of this critical power numerically.
In Ref. f14g we obtained a variational estimate of this critical
power s,40d for nonlinearity management. We could not
obtain such an estimate for dispersion management. Numeri-
cally, we found that it was easier to obtain stabilization of
beams with power much larger than the critical value.

IV. CONCLUSION

In conclusion, after a variational and numerical study of
the NLS we find that it is possible to stabilize a spatiotem-
poral light bullet by employing a rapidly oscillating disper-
sion coefficient. We find that the nature of this stabilization is
similar to that obtained by a rapid variation of the Kerr-
nonlinearity parameter. In both cases stabilization is possible
in a SF Kerr medium for optical beams with powerP larger
than a critical value. However, there is no upper limit ofP
for stabilization. A larger value ofP is preferred for stabili-
zation. The stabilization of the light bullet by dispersion and
Kerr nonsingularity managementf14g should find experi-
mental application in optics and Bose-Einstein condensation.
Such a dispersion- and nonsingularity-managed optical soli-
ton can propagate large distances with a minimum of distor-
tion and is to be preferred over normal solitons in optical
communication.
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