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Stabilization of a (3+ 1)-dimensional soliton in a Kerr medium by a rapidly oscillating
dispersion coefficient
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Using the numerical solution of the nonlinear Schrodinger equation and a variational method it is shown that
(3+1)-dimensional spatiotemporal optical solitons can be stabilized by a rapidly oscillating dispersion coeffi-
cient in a Kerr medium with cubic nonlinearity. This has immediate consequence in generating dispersion-
managed robust optical soliton in communication as well as possible stabilized Bose-Einstein condensates in
periodic optical-lattice potential via an effective-mass formulation. We also critically compare the present
stabilization with that obtained by a rapid sinusoidal oscillation of the Kerr nonlinearity parameter.
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[. INTRODUCTION over normal solitons. The recent stabilized optical beam in a
nonlinear waveguide array ifL+1)D [8], called diffraction
managed soliton, is quite similar to the present dispersion-
anaged optical soliton. That problem was descrilgddy

After the prediction of self-trappingl] of an optical
beam in a nonlinear medium resulting in an optical soliton
[2’3].’ there hayfa been many theoretical _and expe””??”t‘% e one-dimensional NLS with a periodic dispersion coeffi-
studies to stabilize such a soliton under different conditiong;jent sych a periodic variation of the dispersion coefficient
of nonlinearity and dispersion. A bright soliton i@ +1) di-  |ea4s to a greater stability of the soliton during propagation
mension(D) in Kerr medium(cubic nonlinearity is uncon-  jn (1+1)D [8]. More recently, Abdullaewet al. [9] have
ditionally stable for positive or self-focusin@F nonlinear-  shown by a variational and numerical solution of the NLS
ity in the nonlinear Schrodinger equatiofNLS) [3].  that by employing a rapidly varying dispersion coefficient it
However, in(2+1)D and (3+1)D, in homogeneous bulk s possible to stabilize an optical soliton {2+1)D over
Kerr medium one cannot have an unconditionally stable solitarge propagation distances.
tonlike beam([3]. [If the nonlinearity is negative or self- The possibility of the stabilization of an optical soliton in
defocusing (SDF), any initially created soliton always (2+1)D by dispersion managemef] and Kerr singularity
spreads ouit3].] If the nonlinearity is positive or of SF type, managemeritt0-12 as well as iN3+1)D by Kerr singular-
any initially created highly localized soliton is unstable in ity managemenf13,14] in SF medium has led us to investi-
both (2+1)D and(3+1)D [3]. Such a confined wave packet gate the possibility of the stabilization of an optical soliton in
in (3+1)D is often called a light bullet and represents the(3+1)D by dispersion management. However, some of these
extension of a self-trapped optical beam into the tempora$tudies were concerned with the stabilization of Bose-
domain[3]. The generation of a light bullet is of vital impor- Einstein condensatd4.0,12,13 using the nonlinear Gross-
tance in soliton-based communication systems. On the exXRitaevskii equatiorf15] which is very similar to the NLS
perimental front strong stabilization 62+ 1)D discrete vor-  structurally. The extension of the problem of stabilization of
tex solitons in a SF nonlinear medium have been observed igptical soliton from lower to higher dimensions, e.g., from
optically induced photonic latticels]. Such solitons, how- (1+1)D to (3+1)D, is of great interest in the actual three-
ever, can only be modeled by a more complicated nonlineardimensional world. It is also more challenging due to the
ity in the NLS in contrast to the simple cubic Kerr nonlin- possibility of violent collapse in SF medium in higher
earity considered in this paper. dimensiond 3].

Recently, through a numerical simulation as well as a We begin the present study with a time-dependent varia-
variational calculation based on the NLS it has been showtional solution of the NLS with a rapidly oscillating disper-
that a soliton in(2+1)D [5,6] can be stabilized in a layered sion coefficient i3+21)D. The variational method leads to a
medium if a variable Kerr nonlinearity coefficient is used in set of coupled differential equations for the soliton width and
different layerd5,6]. A weak modulation of the nonlinearity chirp parameters, which is solved numerically by the fourth-
coefficient along the propagation direction leads to a reasorsrder Adams-Bashforth methdd6]. The variational solu-
able stabilization i2+1)D [5]. A much better stabilization tion illustrates that §3+1)D light bullet can be stabilized
results if the Kerr coefficient is a layered medium is allowedover a large propagation distance in a Kerr SF medium with
to vary rapidly between successive SDF and SF type nonlina rapidly oscillating dispersion coefficient for beam power
earities, i.e., between positive and negative va(éés above a critical value. Next we turn to a complete numerical

However, in recent years optical soliton formed by a con-solution of the partial differential NLS by the Crank-
trolled variation of dispersion coefficientdispersion- Nicholson method17]. The complete numerical solution
managed optical solitorin a Kerr medium has been of gen- demonstrates the stabilization of a light bullet over large
eral interest in communicatiof7]. A dispersion-managed propagation distance by dispersion managemer{8inl)D
soliton allows robust propagation of pulses and is favoredSF Kerr medium.
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We also compare the present stabilization of a light bullet Y 4 P Y2) 9 )
by dispersion management with the stabilization obtained by T s et T U(r,2[?|U(r,2=0. (2
applying an oscillating Kerr nonlinearity as suggested in

Ref. [14]. We find that both schemes lead to comparableror stabilization of the soliton, we shall employ the follow-
stabilization of a light bul_let over a large propagation dIS-ing oscillating dispersion coefficienty(z)=[1+g,sin(wz)],
tance of few thousand units. where frequency is large. In this paper we consider varia-

Although, the present work is of primary interest in the tiona| and numerical solutions of E@2) to illustrate the
generation of robust optical solitons, it is also of interestgiapilization of(3+1)D light bullet.

from a r'n.athgmatical pqint qf view in 'nonlin'ear physics in Recently, it was suggestdd4] that a rapid variation of
the stabilization of a soliton in three dimensions. Moreover, o kerr nonlinearity parameter also stabilizes a soliton. In

this investigation has interesting implication in the study ofy;;q study we critically compare these two ways of stabiliza-
Bose-Einstein condensates. The quantum nonlinear equatigiy, For that purpose we consider

governing the evolution of the condensate, known as the

Gross-Pitaevskii equatiofi5], is identical with the(classi- 9 1# 19

cal) NLS [3], for the evolution of optical soliton, although I—+ -+ 4 n(2)|U(r,2))?|U(r,2=0, (3)

the interpretation of the different variables of these two equa- gz 291% r4r

tions is different. In recent years there has been experimentgl, : : , .
. h ; . ere the nonlinearity parameter will be taken to be rapidl
[18] and theoretica[19] studies of Bose-Einstein conden- varying for stabilizing ?he soliton. In Ref14] n(2) wag y

sates in periodic_optical-lattice potenti'als generated .by faken to be rapidly jumping between positive and negative
standlng-waye Iase.r' beam.' By an effective-mass de.scnptlor\'/'alues and a small propagation distazaeas considered for
the_ Gro_ss-Pltaevskn equation for the Condensate_ln & P abilization. In the present study a sinusoidal variation of
odic optical-lattice potential can be reduced to a dispersion- . ; . .
managed NLS, where the effective mass could be positive OE(Z) is considered over a much larger propagation distance.
negative[20]. There has already been experimental applica- or stabilization we consider(z)=[1-g,sin(wz)] in this pa-

tion of such dispersion management to Bose-Einstein cor2" where the second term on the right is rapidly oscillating
densate$21]. The effective mass can be varied by changingfor a largew and_wheregz IS a constant, .
First we consider the variational approach with the fol-

the parameters of the periodic potentj8]. Once a con- lowi ol G . f ion for th luti f
trolled variation of the effective mass would be possible, it 0W|(r12g) [t:;IalO 1;“’123""‘” wave function for the solution o

might be possible to stabilize a Bose-Einstein condensate i
this fashion.

In Sec. Il we present a variational study of the problem u(r,z) = N(z)exp{—
and demonstrate the possible stabilization of a light bullet in
(8+1)D. In Sec. lll we present a complete numerical study

based on the NLS to study in detail the stabilization of awhereN(z), R(2), b(z), anda(2) are the soliton’s amplitude,

dispersion-managed light bullet. We also compare thé"”dltlrz" ch/|4rp,/2and phase, respectively. In E@) N(z)
present stabilization with that by nonlinearity management as P*/[7"R¥4(2)]. The trial function(4) satisfies(a) the
in Ref. [14]. Finally, in Sec. IV we give the concluding Nnormalization conditiori1,6] as well as the boundary condi-
remarks. tions (b) U(r,z) — const ag — 0 and(c) |U(r,2)| decays ex-
ponentially ag — < [6].
The Lagrangian density for generating Ef) is [10,14]

2

M+|§b(z)r2+ia(z) R

Il. VARIATIONAL CALCULATION . *
E(U) — l(&u* _ _0"U U) _ Z &
2\ sz iz 2| dr

2 |U|4
+_!
2

(5

For anomalous dispersion, the NLS can be writtefi3s

where the functional dependence of the quantities andz

is suppressed. The trial functidd) is substituted in the La-
grangian density and the effective Lagrangian is calculated
by integrating the Lagrangian density=/£(U)dr. With

U given by Eq.(4) the effective Lagrangian is

L 22024 10 2R lur =0, (1)
z 2

where in(3+1)D the three-dimensional vectaor=(x,y,t)

has space componentsndy and time componerif andz is I TN 3 . N?(2)
the direction of propagation. The Laplacian opera&tpracts Lert = o7 N(2R )| - 2b(z)R (2 -2a(2) + 2
on the variablex, y, andt. The dispersion coefficieny(z)
in a Kerr medium is taken to be rapidly oscillating and can 312 3, o
; hy ) : > R (@b(2¥2) |, (6)
have successive positive and negative values. The normaliza- 2Rv(z2) 2
tion condition isfdr|u(r,z)|?=P, whereP is the power of
the optical beani1,6]. where the overhead dot denotes derivative with respezt to

For a spherically symmetric soliton i(8+1)D, u(r,2) The standard Euler-Lagrange equationsNoz), R(z), b(z),
=U(r,2). Then the radial part of the NL&) becomeg 3] and a(2) are[6,10,19 given by
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d ILeg _ 9 Left @) 15 T T :
dz a.ﬁ B ,

where B8 stands forN(z), R(z), b(z), or a(z). The Euler-
Lagrange equation faw(z) gives the normalization:

R(z)/R(0)

TNRE = P. €)
The Euler-Lagrange equations fa(z) andN(z) are given by

. Aoy N2 0.5 ' L '

5b+ —; + = +5b%y= , 9 1 1 2
R R Y 2R 9 0 5 ZO 5 0

] 3 N FIG. 1. The width of the solitiorR(z)/R(0) vs propagation dis-

3b+ 5+ 2y 3b%y= — > (10 tancez from the numerical solution of the coupled set of equations
R V2R (13 and (14), with y(2)=[1+g;sin(w2)] for P=500,g,=4, =15,

where thez dependence of the variables is suppressed. Thg(o)ze’ and«(0)=0.14.

Euler-Lagrange equation fda(2) is )
The numerical values fog, and w are taken as examples,

R(z) =R(2)b(2) 1 (2). (11 otherwise, they do not have great consequence on the result
) . o so long asw is large corresponding to rapid oscillation.
Equations(9) and(10) lead to the following rate of variation  There is no upper limit foP and stabilization seems possible
of b(2): for an arbitrarily largeP. For largerP the stabilization is
. ¥(2) p more sustained and, consequently, it is easier to stabilize a
b(z) = = -b%(2)y(2) - T (12 soliton. However, SF nonlinearity is essential for the stabili-
R'(2) 2\2m*R(2) zation and stabilization is only possible for powrabove a
Now defining the new variable(2)=b(z)R(2), Egs.(11) and ~ critical value. . . . n
(12) can be rewritten as Th_e sinusoidal variation pf _the dispersion cqefflql_ent as
considered above in the variational study only simplifies the

R(z): Y2k (2), (13 algebra and is by no means necessary for stabilization of
solitons. Any rapid periodic oscillation of the dispersion co-
2) p 1 efficient was also found to stabilize the soliton. The same

(14  was found to be true in the stabilization of a soliton by Kerr-
singularity management i(8+1)D [13,14].

D R0 2R
Equations(13) and(14) are the variational equations of mo-

tion for R(z) and x(z). Here we consider the stability condi- 1. NUMERICAL RESULT
tion of optical solitons described variationally by these equa-
tions for y(z)=[1+g;sin(wz)], where the second term is
rapidly varying (large w) with zero mean value. However,
this set of coupled differential equations cannot be solve
analytically and we resort to their numerical solution using
the four-step Adams-Bashforth methptl]. For a largew
and P, andg; =2 stabilization of the soliton is always pos-
sible provided that the initial values d®(z) and «(z) are
appropriately chosen. The soliton can also be stabilized b)l;
employing a periodically oscillating Kerr nonlinearity. How- 9 1# 10 dr?

ever, in that case the coupled set of differential equations for P A U(r,2=0. (19
width R(z) and chirpb(z) was simpler and could be studied

analytically to establish stabilization of the systgbd]. In Eg. (15 we have introduced a strength paramedéz)

In Fig. 1 we exhibit the numerical results for the width with the radial trap. Normallygl(z)=1; when the radial trap
R(z) obtained from the solution of the variational equationsis switched offd(z) will be reduced to zero. Asymptotically
(13) and (14). In the present calculation we take=15, g, decaying real boundary condition foi(r,z) is used through-
=4, P=500, andR(z=0)=6. If the initial value ofb(z) is out this calculation.
chosen appropriately, stabilization of the system can be ob- When the radial trap is reduced to zero the wave function
tained. For these sets of parameters, stabilization was olextends to a large value of Hence to obtain a converged
tained forb(z=0)=0.14, and we show the result in Fig. 1, result a large value of is to be considered in the Crank-
where we plotR(z)/R(0) vs z. The widthR(z) is found to  Nicholson discretization scheme. In the present calculation
remain stable for a range of valueszfSmall oscillations in  we employ arr-step of 0.1 with 40 000 grid points spanning
Fig. 1 sustain the soliton for a large propagation distance anr-value up to 4000 and &step of 0.001. In the course of

Motivated by the approximate variational study above,
now we solve Eqs(2) and(3) numerically using a split-step
d'iteration method employing the Crank-Nicholson discretiza-
tion scheme[17,22. The ziteration is started with the
known solution of some auxiliary equation with zero nonlin-
earity. The auxiliary equation with known Gaussian solution
is obtained by adding a harmonic oscillator potentfako
gs.(2) and(3) and setting the nonlinear term to zero, e.g.,
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FIG. 2. (Color onling Variation of powerP(z) and strengtlu(z) 0.2 - Dispersion Management
of radial trap in the initial stage of stabilization until the radial trap :
is removed and the final pow&=868.4 attained at=400. U(r.2)|
] ) - ] ] ] ) ’ Power = 868.4
z-iteration a positive SF Kerr nonlinearity with appropriate
powerP is switched on slowly and the harmonic trap is also 0.1
switched off slowly. If the nonlinearity is increased rapidly
the system collapses. The tendency to collapse or expand to
infinity must be avoided to obtain a stabilized soliton. Al- 2000
though, for the sake of convenience we applied a harmonic 1500

trap in the beginning of our simulation, which is removed
later with the increase of nonlinearity, this restriction is by no

z
0
r 2040 g5%0

means necessary for stabilizing a soliton.
First we consider the numerical solution of E@®) to
create the desired soliton. After switching off the harmonic 02 4
trap and introducing the final powé, the oscillating disper-
sion coefficienty(z) =[1+g;Sin(wz)] is introduced. A stabili-
zation of the final solution could be obtained for a lakge
andP. If the SF power after switching off the harmonic trap 0:1 7
is large compared to the spatiotemporal size of the beam the
system becomes highly attractive in the final stage and it
eventually collapses. If the final power after switching off the
harmonic trap is small for its size the system becomes
weakly attractive in the final stage and it expands to infinity.
The final power has to have an appropriate value consistent
with the size, for final stabilization.
Starting from Eq.(15) the soliton can be created with a
W_'de range of variation of pOV\{eIP_(z) and strengttd(2). In the arrow atz=300 shows the beginning of collapse wifli(r
Fig. 2 we show the actual variation &2) andd(z) of the  —q ;)| starting to diverge(b) The solitonic wave functiotU(r ,2)|
radial trap in Eq.(15). A stabilized soliton can be obtained of Eq.(2) vsr andz of the light bullet of(a) stabilized by dispersion
for different variations ofP(z) andd(z) and the variation in  managementy(z)=[1+4 sin572)] applied for allz>0. (c) The
Fig. 2 are by no means unique and are to be considered assalitonic wave functionU(r,z)| of Eq. (3) vs r andz of the light
possible variation. By switching off the harmonic trap lin- bullet of (a) stabilized by Kerr nonlinearity managementz)=[1
early for 13<z<15 and increasing the nonlinearity for O -4 sin572)] applied for allz>0.
<z<400, an almost stationary light bullet is prepared. One
interesting feature of Fig. 2 is that we could not find a linearsion coefficient has been applied later.(B*1)D Saito and
variation of P(z) over the whole range to obtain the final Ueda[12] first applied a weak oscillating nonlinearity and
soliton. A linear variation usually led to collapse or expan-then increased its strength in a linear fashion witteration.
sion to infinity of the final soliton. A fine-tuning of the power The nonlinearity manipulation of Saito and Udda] is dis-
was needed for obtaining the quasistationary soliton with theinct from ours. However, the final result should be indepen-
kinetic pressure almost balancing the nonlinear attractiondent of how the oscillating dispersion or nonlinearity coeffi-
This fine-tuning led to the final fractional powBr=868.4. A cient is introduced.
quasistationary soliton, rather than a rapidly expanding or The propagation of the free light bullet is studied by a
collapsing soliton, was ideal for stabilization. Although the direct numerical solution of the NL&). Once it is allowed
final powerP=868.4 is used in this study, stabilization canto propagate in the direction the light bullet starts to col-
be obtained for any greater than a critical value. lapse and is destroyed after propagating a distance of about
In the preparation of the soliton in Fig. 2 no oscillating 300 units ofz as shown in Fig. &) where we plot the profile
dispersion coefficient has been used. The oscillating dispenf the freely propagating light bull¢t)(r,z)| vsr andz. This

Nonlinearity Management

U(r,z
vt | Power = 868.4

0
20
(© r 40 go O

FIG. 3. (Color onling (a) The solitonic wave functiofU(r,2)|
vsr andz of a freely propagating light bullet of powd?=868.4;
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means that the nonlinear attraction supersedes the kinetic 0.16 —5750a = -
pressure in this soliton and it collapses eventually.

In the present scheme of stabilization the dispersion coef- 0.12
ficient y(z)=[1+g;sin(wz)] oscillates rapidly between posi-
tive and negative values. A negative dispersion coefficient

. 0.003 | .
i\ 0.002 | 1

1000)

¥(z) corresponds to collapse and a positive dispersion coef- § 0.08 0001 1 ]
ficient corresponds to expansion. In one half of the oscillat- S '

ing cycle the soliton tends to collapse and in the other half it — 004} 1000 2000 -
tries to expand. If, in the first semicycle of the application of 'ght bullet

the oscillating dispersion coefficien(z) is positive, the 0 : gusslen
slowly collapsing soliton of Fig. @& will tend to expand in 0 40 80 120
this semicycle. In the next semicycle(z) will be negative r

and the soliton will tend to collapse. This happens for a
positiveg; > 1. If the expansion in the first interval is com-
pensated for by the collapse in the next interval, a stabiliza
tion of the system is obtained. Howevergif is negative, in
the first semicycle of oscillation the slowly collapsing soliton
of Fig. 3(a) will collapse further and a satisfactory stabiliza- of strong binding, and a large extentionrintypical of weak
tion cannot be obtained. For a largethe system remains binding. We illustrate these features in Fig. 4 where we plot
virtually static and the very small oscillations arising from |U(r,z=1000| of a light bullet vsr for dispersion or nonlin-
collapse and expansion remain unperceptible. earity managements of Figs(3 and 3c). The curves for

Next using Eq(2) we illustrate the possible stabilization dispersion and nonlinearity managements are identical with
of the (3+1)D soliton of powerP=868.4 of Fig. 3a) by the  each other and a single curve is shown. The long tail of the
application of the oscillating dispersion coefficiepz)=[1  stabilized light bullet is shown in inset. For comparison a
+g;Sin(w2)] with g;=4 andw=5 for z>0. The profile of  Gaussiar] ~exp(-r2/100)] is also shown.
the dispersion-managed light bullgd(r,2)| vs r and z is For both dispersion and nonlinearity managements we
plotted in Fig. 3b). It is realized that after the application of found that the stabilization can only be obtained for beams
dispersion management the soliton remains stable for a larggith power larger than a critical value. However, we could
propagation distance. This shows clearly the effect of the not obtain a precise value of this critical power numerically.
oscillating dispersion coefficient on stabilization. The disper-in Ref.[14] we obtained a variational estimate of this critical
sion management of the type considered in Fih) an  power (~40) for nonlinearity management. We could not
prolong the life of the soliton significantly. In Fig(i3 the  obtain such an estimate for dispersion management. Numeri-
profile of the solitonic wave function over the large interval cally, we found that it was easier to obtain stabilization of
of z clearly shows the quality of stabilization. The stabiliza- hpeams with power much larger than the critical value.
tion seems to be good and can be continued for longer inter-
vals of z by considering a soliton of larger power.

Finally, using Eq.(3) we consider the stabilization of the V. CONCLUSION
above soliton of poweP=868.4 by the application of an  |n conclusion, after a variational and numerical study of
oscillating Kerr nonlinearityn(z)=[1-g,sin(wz)] with g>  the NLS we find that it is possible to stabilize a spatiotem-
=4 and w=57 for z>0. In this case forg,>1, the Kerr  poral light bullet by employing a rapidly oscillating disper-
nonlinearity coefficient(2) is negative in the first semicycle sion coefficient. We find that the nature of this stabilization is
of the oscillating Kerr coefficient. This will correspond to an similar to that obtained by a rapid variation of the Kerr-
expansion of the soliton, so that the collapsing tendency ofonlinearity parameter. In both cases stabilization is possible
the soliton of Fig. 8a) could be stopped and a stabilization in a SF Kerr medium for optical beams with powedarger
of the soliton could be obtained. The profile of the stabilizedthan a critical value. However, there is no upper limitkf
light bullet by nonlinearity management is plotted in Fig. for stabilization. A larger value oP is preferred for stabili-
3(c). It is found that the oscillating Kerr nonlinearity can zation. The stabilization of the light bullet by dispersion and
stabilize the light bullet for a large propagation distance anerr nonsingularity managemeiii4] should find experi-
enhance the life of the soliton significantly. The quality of mental application in optics and Bose-Einstein condensation.
stabilization is comparable to that obtained by dispersiorsuch a dispersion- and nonsingularity-managed optical soli-
management. In both schemes the light bullet can remaiton can propagate large distances with a minimum of distor-
stable for few thousands units af In Figs. 3 we illustrate tion and is to be preferred over normal solitons in optical
this stabilization forz up to 2000. The stabilization obtained communication.
in (2+1)D by similar dispersion[9] and nonlinearity
[6,10-12 managements was over a much smaller interval of
z (<100).

The final solitonic wave functiof(r,z)| extends to very The work was supported in part by the CNPq of Brazil.
large values of. It has a sharp peak for smallreminiscent We thank Dr. H. Saito for comments.

FIG. 4. (Color onling The wave functiofU(r,z=1000]| of the
stabilized light bullet of Figs. &) and 3c) vsr. For comparison the
Gaussiarf ~exp(-r2/100)] is also shown.
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